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Vector-Valued Functions

Definition A vector-valued function, or vector function

r : I ⊂ R → Rn

is a function whose domain is a subset I of R and whose range is a set of vectors in Rn, that is

r(t) = ⟨r1(t), r2(t), . . . , rn(t)⟩ =
n∑

i=1

ri(t)ei ∈ Rn for each t ∈ I,

where

� ei = (0, . . . , 0,
ith

1 , 0, . . . , 0) is the unit vector in the positive ith coordinate,

� r1, r2, . . . , rn : I → R are called the component functions of r.

Definitions Let r : I ⊂ R → Rn be a vector function defined by

r(t) = ⟨r1(t), r2(t), . . . , rn(t)⟩ =
n∑

i=1

ri(t)ei t ∈ I.

� lim
t→a

r(t) exists if and only if lim
t→a

ri(t) exists for each 1 ≤ i ≤ n.

Furthermore, if lim
t→a

r(t) exists, then

lim
t→a

r(t) = ⟨lim
t→a

r1(t), lim
t→a

r2(t), . . . , lim
t→a

rn(t)⟩.

� r is continuous at t = a if
lim
t→a

r(t) = r(a).

Thus r is continuous at t = a if and only if its component functions r1, r2, . . . , rn are
continuous at a.

� r is differentiable at t = a if and only if its component functions r1, r2, . . . , rn are differen-
tiable at a.

Furthermore, if r is differentiable at t = a, then its derivative r′(a) is a vector in Rn defined
by

r′(a) = lim
t→a

r(t)− r(a)

t− a
= ⟨lim

t→a

r1(t)− r1(a)

t− a
, lim
t→a

r2(t)− r2(a)

t− a
, . . . , lim

t→a

rn(t)− rn(a)

t− a
⟩ =

n∑
i=1

r′i(a)ei.

� r is integrable on [a, b] ⊂ I if and only if its component functions r1, r2, . . . , rn are integrable
on [a, b].

Furthermore, if r is integrable on [a, b], then its definite integral

∫ b

a

r(t) dt is a vector in Rn

defined by∫ b

a

r(t) dt = ⟨
∫ b

a

r1(t) dt,

∫ b

a

r2(t) dt, . . . ,

∫ b

a

rn(t) dt⟩ =
n∑

i=1

[∫ b

a

ri(t) dt

]
ei.
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Definition If r : I ⊂ R → R3 is continuous on an interval I, then the set C defined by

C = {(x1, x2, x3) | x1 = r1(t), x2 = r2(t), x3 = r3(t), t ∈ I} = trace of r throughout I

is called a space curve given by the vector function (or parametrization) r(t), t ∈ I.

Note that a single curve C can be represented by more than one vector function. For instance,

r1(t) = ⟨t, t2, t3⟩, 1 ≤ t ≤ 2 and r2(u) = ⟨eu, e2u, e3u⟩, 0 ≤ u ≤ ln2

are parametrizations of the same twisted cubic curve, and the connection between the parameters
t and u is given by t = eu.

Examples

1. r(t) = ⟨t3, ln(3− t),
√
t⟩ is a vector function from [0, 3) to R3.

2. Find lim
t→0

r(t), wehre r(t) = (1 + t3)i+ te−tj+
sin t

t
k, where i = e1, j = e2,k = e3.

3. Sketch the curve whose vector equation is r(t) = cos ti + sin tj + tk, t ∈ R. Note that this
curve is called a helix.

4. Find the derivative of r(t) at t = 0, wehre r(t) = (1+ t3)i+ te−tj+
sin t

t
k, and find the unit

tangent vector at the point where t = 0.

5. Find

∫ π/2

0

r(t) dt, where r(t) = 2 cos ti+ sin tj+ 2tk.

Theorem Let I be an interval, u, v : I → R3 be differentiable vector functions, c be a scalar,
f : I → R be a differentiable function and g : I → I be a differentiable function. Then

1.
d

dt
[u(t) + v(t)] = u′(t) + v′(t)

2.
d

dt
[cu(t)] = cu′(t)

3.
d

dt
[f(t)u(t)] = f ′(t)u(t) + f(t)u′(t)

4.
d

dt
[u(t) · v(t)] = u′(t) · v(t) + u(t) · v′(t),

5.
d

dt
[u(t)× v(t)] = u′(t)×v(t)+u(t)×v′(t),

6.
d

dt
[u(g(t))] = g′(t)u′(g(t)) (Chain Rule)

where ⟨u(t) · v(t)⟩ = u(t) · v(t) and u(t)× v(t) denotes the inner product and the cross productof
u(t) and v(t), respectively.

Theorem If r : I → R3 is differentiable and |r(t)| = c (a constant), then r′(t) is orthogonal to
r(t) for all t.

Arc Length Let C be a curve given by a vector equation (or vector function, or parametrization)

r(t) = ⟨r1(t), r2(t), r3(t)⟩ = r1(t)i+ r2(t)j+ r3(t)k, t ∈ [a, b]

where r′ is continuous and C is traversed exactly once as t increases from a to b. Then
the length of C is

L(C) =

∫ b

a

|r′(t)| dt =
∫ b

a

√√√√ 3∑
i=1

[r′i(t)]
2 dt =

∫ b

a

√√√√ 3∑
i=1

[
dxi

dt

]2
dt.
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Define its arc length function s by

s = s(t) =

∫ t

a

|r′(u)| du =

∫ t

a

√√√√ 3∑
i=1

[
dxi

du

]2
du.

Then s(t) is the length of the part of C between r(a) and r(t), and, by the Fundamental Theorem
of Calculus, s(t) is differentiable with

ds

dt
= |r′(t)| for t ∈ (a, b).

It is often useful to parametrize a curve with respect to arc length because arc length
arises naturally from the shape of the curve and does not depend on a particular coordinate
system or a particular parametrization.

Examples

1. Find the length of the arc of the circular helix with vector equation r(t) = cos ti+sin tj+ tk
from the point (1, 0, 0) to the point (1, 0, 2π).

2. Reparametrize the helix r(t) = cos ti+ sin tj+ tk with respect to arc length measured from
(1, 0, 0) in the direction of increasing t.

Definition A parametrization r(t) is called smooth (or regular) on an interval I if r′(t) is
continuous and r′(t) ̸= 0 for each t ∈ I.

Remark Let C be a smooth curve defined by the vector function r(t), t ∈ [a, b], s(t) =∫ t

a

|r′(u)| du, and let L =

∫ b

a

|r′(u)| du be the length of C.

Since
ds

dt
= |r′(t)| > 0 for t ∈ (a, b), s = s(t) : [a, b] → [0, L] is an 1-1, increasing function and

has a differentiable inverse t = t(s) : [0, L] → [a, b] such that

1 =
dt

dt
=

dt

ds

ds

dt
=⇒ dt

ds
=

1

ds/dt
=

1

|r′(t)|
.

A curve is called smooth if it has a smooth parametrization. A smooth curve has no sharp corners
(e.g. r(t) = (t, |t|), t ∈ R, at (0, 0), r′(0) does not exist) or cusps (e.g. r(t) = (t2, t3), t ≥ 0, at
(0, 0), r′(0) = (0, 0)); when the tangent vector turns, it does so continuously. If C is a smooth
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curve defined by the vector function r, recall that the unit tangent vector T (t) of C at r(t) is
given by

T (t) =
r′(t)

|r′(t)|
=⇒ ⟨T (t), T (t)⟩ = 1 =⇒ d

dt
⟨T (t), T (t)⟩ = 0 =⇒ ⟨T ′(t), T (t)⟩ = 0 for all t ∈ I

and T (t) indicates the direction of the curve.

Definition Let C be a smooth (or regular) curve defined by the vector function r(t), t ∈ I, and
let T (t) be the unit tangent vector to C at r(t). Then the curvature of a curve at r(t) is

k =

∣∣∣∣dTds
∣∣∣∣.

The curvature is easier to compute if it is expressed in terms of the parameter t instead of s, so
we use the Chain Rule to write

dT

dt
=

dT

ds

ds

dt
and k =

∣∣∣∣dTds
∣∣∣∣ = |T ′(t)|

|s′(t)|
=

|T ′(t)|
|r′(t)|

.

Example Show that the curvature of a circle of radius a is
1

a
.

Definition Let C be a smooth (or regular) curve defined by the vector function r(t), t ∈ I, and let
T (t) be the unit tangent vector to C at r(t). Suppose that the curvature k(t) ̸= 0 ⇐⇒ T ′(t) ̸= 0
at r(t) ∈ C. Then we can define the principal unit normal vector N(t) (or simply unit normal)
as

N(t) =
T ′(t)

|T ′(t)|
when k(t) ̸= 0 =⇒ dT

ds
= k(s)N(s), where s = s(t) is the arc length parameter

and the vector
B(t) = T (t)×N(t)

is called the binormal vector.

Note that B(t) is perpendicular to both T (t) andN(t) and is also a unit vector, i.e. ⟨B(t), T (t)⟩ =
0, ⟨B(t), N(t)⟩ = 0 and |B(t)| = |T (t)×N(t)| = |T (t)| |N(t)| sin(π/2) = 1.

Theorem The curvature of the curve given by the vector function r(t) is

k(t) =
|r′(t)× r′′(t)|

|r′(t)|3

Proof Since

k(s) = |k(s)B(s)| = |k(s)T (s)×N(s)| = |T (s)× dT

ds
| = |dr

ds
× d2r

ds2
|,

and since T (s) =
dr

ds
,

dr

ds
= r′(t)

dt

ds
=

r′(t)

|r′(t)|
and

d2r

ds2
=

r′′(t)

|r′(t)|2
+ r′(t)

d2t

ds2
r′×r′=0
=⇒ dr

ds
× d2r

ds2
=

r′(t)× r′′(t)

|r′(t)|3
,
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we have

k(t) =
|r′(t)× r′′(t)|

|r′(t)|3
.

Remark Let C be a smooth (or regular) curve defined by the position vector function r(t), t ∈ I,
and let s = s(t) be the arc length parameter. Since

dr

ds
= T (s),

d2r

ds2
=

r′′(t)

|r′(t)|2
+ r′(t)

d2t

ds2
and

dT

ds
= k(s)N(s),

=⇒ k(s)N(s) =
d2r

ds2
=

r′′(t)

|r′(t)|2
+ r′(t)

d2t

ds2
=

a(t)

|v(t)|2
+ T (s)

(
|v(t)| d

2t

ds2

)
N⊥T, |N |=|T |=1

=⇒ aN(t) = ⟨a(t) , N(s)⟩ = k(s)|v(t)|2, aT (t) = ⟨a(t) , T (s)⟩ = −|v(t)|3 · d
2t

ds2

where v(t) = r′(t), a(t) = r′′(t) are respectively the velocity, acceleration vectors at the position
r(t) and aN(t), aT (t) are the normal and tangent components of a(t).

Example For the special case of a plane curve with equation y = f(x), we choose x as the
parameter and write r(x) = xi+ f(x)j. Then r′(x) = i+ f ′(x)j, r′′(x) = f ′′(x)j, and

k(x) =
|f ′′(x)|

[1 + (f ′(x))2]3/2
.

Example Find the unit normal and binormal vectors for the helix r(t) = ⟨cos t, sin t, t⟩.

Solution At r(t), since r′(t) = ⟨− sin t, cos t, 1⟩, the unit tangent vector T (t) =
r′(t)

|r′(t)|
=

1√
2
⟨− sin t, cos t, 1⟩, T ′(t) =

1√
2
⟨− cos t,− sin t, 0⟩, the unit normal vector N(t) =

T ′(t)

|T ′(t)|
=

⟨− cos t,− sin t, 0⟩, and the unit binormal vector B(t) = T (t)×N(t) =
1√
2
⟨sin t,− cos t, 1⟩.
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Definition The plane determined by the vectors N and B at a point P on a curve C is called
the normal plane of C at P. It consists of all lines that are orthogonal to the tangent vector T.
The plane determined by the vectors T and N is called the osculating plane of C at P.

Definition The circle of curvature, or the osculating circle, of C at P is the circle in the osculating

plane that passes through P with radius
1

k
and center a distance

1

k
from P along the vector N.

The center of the circle is called the center of curvature of C at P.

Remarks

� We can think of the circle of curvature as the circle that best describes how C behaves near
P, it shares the same tangent, normal, and curvature at P.

� Note that the curvature k = |dT/ds| at a point P on a curve C indicates how tightly the
curve “bends.” Since T is a normal vector for the normal plane, dT/ds tells us how the
normal plane changes as P moves along C.

� Since B is normal to the osculating plane, dB/ds gives us information about how the
osculating plane changes as P moves along C. Thus there is a scalar τ such that

dB

ds
= τN =⇒ τ = ⟨dB

ds
,N⟩ ⇐⇒ τ(t) =

⟨B′(t), N(t)⟩
|r′(t)|

,

where τ is called the torsion of C at P = r(t).

Example Find the torsion τ(t) of the helix r(t) = ⟨cos t, sin t, t⟩ at r(t).
Solution At r(t), since r′(t) = ⟨− sin t, cos t, 1⟩, |r′(t)| =

√
2,

T (t) =
r′(t)

|r′(t)|
=

1√
2
⟨− sin t, cos t, 1⟩, T ′(t) =

1√
2
⟨− cos t,− sin t, 0⟩,

N(t) =
T ′(t)

|T ′(t)|
= ⟨− cos t,− sin t, 0⟩, B(t) = T (t) × N(t) =

1√
2
⟨sin t,− cos t, 1⟩, we obtain that

B′(t) =
1√
2
⟨cos t, sin t, 0⟩ and

τ(t) =
⟨B′(t), N(t)⟩

|r′(t)|
=

⟨B′(t), N(t)⟩√
2

= −cos2 t+ sin2 t

2
= −1

2
.
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More Facts (補補補充充充教教教材材材)

Definitions Let x = (x1, x2, x3) and y = (y1, y2, y3) be vectors in R3.

(a) The inner product ⟨x , y⟩ = x · y is defined by

⟨x , y⟩ = x · y =
3∑

i=1

xiyi.

Note that for any x, y, z ∈ R3 and for any a ∈ R, the definition implies that

� ⟨x , y⟩ = x · y =
3∑

i=1

xiyi =
3∑

i=1

yixi = y · x = ⟨y , x⟩ (inner product is symmetric),

� ⟨z , ax+ y⟩ = ⟨ax+ y , z⟩ = a⟨x , z⟩+ ⟨y , z⟩ (inner product is bilinear).
(b) The cross product x× y is defined by ,

x× y =

(∣∣∣∣x2 x3

y2 y3

∣∣∣∣ , − ∣∣∣∣x1 x3

y1 y3

∣∣∣∣ , ∣∣∣∣x1 x2

y1 y2

∣∣∣∣) = (x2y3 − x3y2 , x3y1 − x1y3 , x1y2 − x2y1) .

The definition implies that

y×x =

(∣∣∣∣y2 y3
x2 x3

∣∣∣∣ , − ∣∣∣∣y1 y3
x1 x3

∣∣∣∣ , ∣∣∣∣y1 y2
x1 x2

∣∣∣∣) = −
(∣∣∣∣x2 x3

y2 y3

∣∣∣∣ , − ∣∣∣∣x1 x3

y1 y3

∣∣∣∣ , ∣∣∣∣x1 x2

y1 y2

∣∣∣∣) = −x×y,

Remarks

(a) By the law of cosines,

x

x− yy

θ

|x− y|2 = (length of the vector x− y)2 = |x|2 + |y|2 − 2|x||y| cos θ.
This gives

2|x||y| cos θ = |x|2 + |y|2 − |x− y|2

=
3∑

i=1

x2
i +

3∑
i=1

y2i −
3∑

i=1

(
xi − yi

)2
= 2

3∑
i=1

xiyi

= 2⟨x , y⟩.

Hence we have
3∑

i=1

xiyi = ⟨x , y⟩ = |x||y| cos θ, where θ is the angle between x and y.
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(b) Let z = (z1, z2, z3) be a vector in R3. Then

⟨z , x× y⟩ =

〈
z ,

(∣∣∣∣x2 x3

y2 y3

∣∣∣∣ , − ∣∣∣∣x1 x3

y1 y3

∣∣∣∣ , ∣∣∣∣x1 x2

y1 y2

∣∣∣∣)〉
= z1

∣∣∣∣x2 x3

y2 y3

∣∣∣∣− z2

∣∣∣∣x1 x3

y1 y3

∣∣∣∣+ z3

∣∣∣∣x1 x2

y1 y2

∣∣∣∣
=

∣∣∣∣∣∣
z1 z2 z3
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ = det(z, x, y) = determinant of

z1 z2 z3
x1 x2 x3

y1 y2 y3


For any a, b ∈ R, since

⟨ax+ by , x× y⟩ =

∣∣∣∣∣∣
ax1 + by1 ax2 + by2 ax3 + by3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ = a

∣∣∣∣∣∣
x1 x2 x3

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣+ b

∣∣∣∣∣∣
y1 y2 y3
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣ = 0,

If x× y ̸= 0 ∈ R3, then x× y is a vector perpendicular to the plane spanned by x and y.

(c) If x and y are parallel, then x× y = 0 ∈ R3.

(d) Let e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1). Since

⟨ei, ej⟩ =

{
1 if i = j,

0 if i ̸= j,
and ei × ei = 0 for i = 1, 2, 3,

e1 × e2 = e3, e1 × e3 = −e2, e2 × e3 = e1 and det(ei × ej, ei, ej) = 1 for all 1 ≤ i ̸= j ≤ 3,

we have

(ei × ej) · (ek × eℓ) = det(ei × ej, ek, eℓ)

=


0 if i = j, or k = ℓ, or {i ̸= j} ≠ {k ̸= ℓ},
1 if {i = k ̸= j = ℓ}
−1 if {i = ℓ ̸= j = k}

=

∣∣∣∣ei · ek ej · ek
ei · eℓ ej · eℓ

∣∣∣∣ for all i, j, k, ℓ = 1, 2, 3,

and the identity

(u× v) · (x× y) =

∣∣∣∣u · x v · x
u · y v · y

∣∣∣∣ for all u, v, x, y ∈ R3

by noting that both sides are linear in u =
3∑

i=1

uiei, v =
3∑

j=1

vjej, x =
3∑

k=1

xkek, y =
3∑

ℓ=1

yℓeℓ.

In particular, for any x, y ∈ R3 this implies that

(x×y)·(x×y) =

∣∣∣∣x · x y · x
x · y y · y

∣∣∣∣ = (x · x)2 (y · y)2−(x · y)2 = |x|2|y|2−|x|2|y|2 cos2 θ = |x|2|y|2 sin2 θ

so |x× y| = |x| |y| sin θ, where θ is the angle between x and y. Hence |x× y| = the area of
the parallelogram spanned by x and y.
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(e) If x× y ̸= 0 ∈ R3, then det(x× y, x, y) = ⟨x× y , x× y⟩ = |x× y|2 > 0, and x, y and x× y
form a right-handed triple.

Remarks Let x, y : (a, b) → R3 be differentiable functions defined on (a, b) with vector value
in R3. Then

(a)
d

dt
⟨x , y⟩ = ⟨dx

dt
, y⟩+ ⟨x , dy

dt
⟩.

Proof For each t ∈ (a, b), let

x = x(t) = (x1(t), x2(t), x3(t)) = (x1, x2, x3), y = y(t) = (y1(t), y2(t), y3(t)) = (y1, y2, y3).

Since ⟨x , y⟩ =
3∑

i=1

xiyi, we have

d

dt
⟨x , y⟩ =

3∑
i=1

d

dt
(xiyi) =

3∑
i=1

dxi

dt
yi +

3∑
i=1

dyi
dt

xi = ⟨dx
dt

, y⟩+ ⟨x , dy
dt

⟩.

(b)
d

dt

(
x× y

)
=

dx

dt
× y + x× dy

dt
.

(c) If |x(t)| = r, a positive constant, for all t ∈ (a, b), then
d

dt
⟨x , x⟩ =

d

dt
(r2) = 0. We have

⟨dx
dt

, x⟩ = 0 for all t ∈ (a, b) =⇒ dx

dt
⊥ x (互相垂直) whenever

dx

dt
̸= 0.
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