Vector-Valued Functions

Definition A vector-valued function, or vector function

$$
r: I \subset \mathbb{R} \rightarrow \mathbb{R}^{n}
$$

is a function whose domain is a subset I of \mathbb{R} and whose range is a set of vectors in \mathbb{R}^{n}, that is

$$
r(t)=\left\langle r_{1}(t), r_{2}(t), \ldots, r_{n}(t)\right\rangle=\sum_{i=1}^{n} r_{i}(t) e_{i} \in \mathbb{R}^{n} \quad \text { for each } t \in I,
$$

where

- $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ is the unit vector in the positive $i^{\text {th }}$ coordinate,
- $r_{1}, r_{2}, \ldots, r_{n}: I \rightarrow \mathbb{R}$ are called the component functions of r.

Definitions Let $r: I \subset \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a vector function defined by

$$
r(t)=\left\langle r_{1}(t), r_{2}(t), \ldots, r_{n}(t)\right\rangle=\sum_{i=1}^{n} r_{i}(t) e_{i} \quad t \in I .
$$

- $\lim _{t \rightarrow a} r(t)$ exists if and only if $\lim _{t \rightarrow a} r_{i}(t)$ exists for each $1 \leq i \leq n$.

Furthermore, if $\lim _{t \rightarrow a} r(t)$ exists, then

$$
\lim _{t \rightarrow a} r(t)=\left\langle\lim _{t \rightarrow a} r_{1}(t), \lim _{t \rightarrow a} r_{2}(t), \ldots, \lim _{t \rightarrow a} r_{n}(t)\right\rangle .
$$

- r is continuous at $t=a$ if

$$
\lim _{t \rightarrow a} r(t)=r(a)
$$

Thus r is continuous at $t=a$ if and only if its component functions $r_{1}, r_{2}, \ldots, r_{n}$ are continuous at a.

- r is differentiable at $t=a$ if and only if its component functions $r_{1}, r_{2}, \ldots, r_{n}$ are differentiable at a.
Furthermore, if r is differentiable at $t=a$, then its derivative $r^{\prime}(a)$ is a vector in \mathbb{R}^{n} defined by

$$
r^{\prime}(a)=\lim _{t \rightarrow a} \frac{r(t)-r(a)}{t-a}=\left\langle\lim _{t \rightarrow a} \frac{r_{1}(t)-r_{1}(a)}{t-a}, \lim _{t \rightarrow a} \frac{r_{2}(t)-r_{2}(a)}{t-a}, \ldots, \lim _{t \rightarrow a} \frac{r_{n}(t)-r_{n}(a)}{t-a}\right\rangle=\sum_{i=1}^{n} r_{i}^{\prime}(a) e_{i} .
$$

- r is integrable on $[a, b] \subset I$ if and only if its component functions $r_{1}, r_{2}, \ldots, r_{n}$ are integrable on $[a, b]$.
Furthermore, if r is integrable on $[a, b]$, then its definite integral $\int_{a}^{b} r(t) d t$ is a vector in \mathbb{R}^{n} defined by

$$
\int_{a}^{b} r(t) d t=\left\langle\int_{a}^{b} r_{1}(t) d t, \int_{a}^{b} r_{2}(t) d t, \ldots, \int_{a}^{b} r_{n}(t) d t\right\rangle=\sum_{i=1}^{n}\left[\int_{a}^{b} r_{i}(t) d t\right] e_{i}
$$

Definition If $r: I \subset \mathbb{R} \rightarrow \mathbb{R}^{3}$ is continuous on an interval I, then the set C defined by

$$
C=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}=r_{1}(t), x_{2}=r_{2}(t), x_{3}=r_{3}(t), t \in I\right\}=\text { trace of } r \text { throughout } I
$$

is called a space curve given by the vector function (or parametrization) $r(t), t \in I$.
Note that a single curve C can be represented by more than one vector function. For instance,

$$
r_{1}(t)=\left\langle t, t^{2}, t^{3}\right\rangle, 1 \leq t \leq 2 \quad \text { and } \quad r_{2}(u)=\left\langle e^{u}, e^{2 u}, e^{3 u}\right\rangle, 0 \leq u \leq \ln 2
$$

are parametrizations of the same twisted cubic curve, and the connection between the parameters t and u is given by $t=e^{u}$.

Examples

1. $r(t)=\left\langle t^{3}, \ln (3-t), \sqrt{t}\right\rangle$ is a vector function from $[0,3)$ to \mathbb{R}^{3}.
2. Find $\lim _{t \rightarrow 0} r(t)$, wehre $r(t)=\left(1+t^{3}\right) \mathbf{i}+t e^{-t} \mathbf{j}+\frac{\sin t}{t} \mathbf{k}$, where $\mathbf{i}=e_{1}, \mathbf{j}=e_{2}, \mathbf{k}=e_{3}$.
3. Sketch the curve whose vector equation is $r(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}, t \in \mathbb{R}$. Note that this curve is called a helix.
4. Find the derivative of $r(t)$ at $t=0$, wehre $r(t)=\left(1+t^{3}\right) \mathbf{i}+t e^{-t} \mathbf{j}+\frac{\sin t}{t} \mathbf{k}$, and find the unit tangent vector at the point where $t=0$.
5. Find $\int_{0}^{\pi / 2} r(t) d t$, where $r(t)=2 \cos t \mathbf{i}+\sin t \mathbf{j}+2 t \mathbf{k}$.

Theorem Let I be an interval, $u, v: I \rightarrow \mathbb{R}^{3}$ be differentiable vector functions, c be a scalar, $f: I \rightarrow \mathbb{R}$ be a differentiable function and $g: I \rightarrow I$ be a differentiable function. Then

1. $\frac{d}{d t}[u(t)+v(t)]=u^{\prime}(t)+v^{\prime}(t)$
2. $\frac{d}{d t}[c u(t)]=c u^{\prime}(t)$
3. $\frac{d}{d t}[f(t) u(t)]=f^{\prime}(t) u(t)+f(t) u^{\prime}(t)$
4. $\frac{d}{d t}[u(t) \cdot v(t)]=u^{\prime}(t) \cdot v(t)+u(t) \cdot v^{\prime}(t)$,
5. $\frac{d}{d t}[u(t) \times v(t)]=u^{\prime}(t) \times v(t)+u(t) \times v^{\prime}(t)$,
6. $\frac{d}{d t}[u(g(t))]=g^{\prime}(t) u^{\prime}(g(t)) \quad$ (Chain Rule)
where $\langle u(t) \cdot v(t)\rangle=u(t) \cdot v(t)$ and $u(t) \times v(t)$ denotes the inner product and the cross productof $u(t)$ and $v(t)$, respectively.
Theorem If $r: I \rightarrow \mathbb{R}^{3}$ is differentiable and $|r(t)|=c$ (a constant), then $r^{\prime}(t)$ is orthogonal to $r(t)$ for all t.

Arc Length Let C be a curve given by a vector equation (or vector function, or parametrization)

$$
r(t)=\left\langle r_{1}(t), r_{2}(t), r_{3}(t)\right\rangle=r_{1}(t) \mathbf{i}+r_{2}(t) \mathbf{j}+r_{3}(t) \mathbf{k}, \quad t \in[a, b]
$$

where r^{\prime} is continuous and C is traversed exactly once as t increases from a to b. Then the length of C is

$$
L(C)=\int_{a}^{b}\left|r^{\prime}(t)\right| d t=\int_{a}^{b} \sqrt{\sum_{i=1}^{3}\left[r_{i}^{\prime}(t)\right]^{2}} d t=\int_{a}^{b} \sqrt{\sum_{i=1}^{3}\left[\frac{d x_{i}}{d t}\right]^{2}} d t
$$

Define its arc length function s by

$$
s=s(t)=\int_{a}^{t}\left|r^{\prime}(u)\right| d u=\int_{a}^{t} \sqrt{\sum_{i=1}^{3}\left[\frac{d x_{i}}{d u}\right]^{2}} d u
$$

Then $s(t)$ is the length of the part of C between $r(a)$ and $r(t)$, and, by the Fundamental Theorem of Calculus, $s(t)$ is differentiable with

$$
\frac{d s}{d t}=\left|r^{\prime}(t)\right| \quad \text { for } t \in(a, b) .
$$

It is often useful to parametrize a curve with respect to arc length because arc length arises naturally from the shape of the curve and does not depend on a particular coordinate system or a particular parametrization.

Examples

1. Find the length of the arc of the circular helix with vector equation $r(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}$ from the point $(1,0,0)$ to the point $(1,0,2 \pi)$.
2. Reparametrize the helix $r(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}$ with respect to arc length measured from $(1,0,0)$ in the direction of increasing t.

Definition A parametrization $r(t)$ is called smooth (or regular) on an interval I if $r^{\prime}(t)$ is continuous and $r^{\prime}(t) \neq 0$ for each $t \in I$.
Remark Let C be a smooth curve defined by the vector function $r(t), t \in[a, b], s(t)=$ $\int_{a}^{t}\left|r^{\prime}(u)\right| d u$, and let $L=\int_{a}^{b}\left|r^{\prime}(u)\right| d u$ be the length of C.
Since $\frac{d s}{d t}=\left|r^{\prime}(t)\right|>0$ for $t \in(a, b), s=s(t):[a, b] \rightarrow[0, L]$ is an 1-1, increasing function and has a differentiable inverse $t=t(s):[0, L] \rightarrow[a, b]$ such that

$$
1=\frac{d t}{d t}=\frac{d t}{d s} \frac{d s}{d t} \Longrightarrow \frac{d t}{d s}=\frac{1}{d s / d t}=\frac{1}{\left|r^{\prime}(t)\right|}
$$

A curve is called smooth if it has a smooth parametrization. A smooth curve has no sharp corners (e.g. $r(t)=(t,|t|), t \in \mathbb{R}$, at $(0,0), r^{\prime}(0)$ does not exist) or cusps (e.g. $r(t)=\left(t^{2}, t^{3}\right), t \geq 0$, at $\left.(0,0), r^{\prime}(0)=(0,0)\right)$; when the tangent vector turns, it does so continuously. If C is a smooth
curve defined by the vector function r, recall that the unit tangent vector $T(t)$ of C at $r(t)$ is given by

$$
T(t)=\frac{r^{\prime}(t)}{\left|r^{\prime}(t)\right|} \Longrightarrow\langle T(t), T(t)\rangle=1 \Longrightarrow \frac{d}{d t}\langle T(t), T(t)\rangle=0 \Longrightarrow\left\langle T^{\prime}(t), T(t)\right\rangle=0 \text { for all } t \in I
$$

and $T(t)$ indicates the direction of the curve.
Definition Let C be a smooth (or regular) curve defined by the vector function $r(t), t \in I$, and let $T(t)$ be the unit tangent vector to C at $r(t)$. Then the curvature of a curve at $r(t)$ is

$$
k=\left|\frac{d T}{d s}\right|
$$

The curvature is easier to compute if it is expressed in terms of the parameter t instead of s, so we use the Chain Rule to write

$$
\frac{d T}{d t}=\frac{d T}{d s} \frac{d s}{d t} \quad \text { and } \quad k=\left|\frac{d T}{d s}\right|=\frac{\left|T^{\prime}(t)\right|}{\left|s^{\prime}(t)\right|}=\frac{\left|T^{\prime}(t)\right|}{\left|r^{\prime}(t)\right|}
$$

Example Show that the curvature of a circle of radius a is $\frac{1}{a}$.
Definition Let C be a smooth (or regular) curve defined by the vector function $r(t), t \in I$, and let $T(t)$ be the unit tangent vector to C at $r(t)$. Suppose that the curvature $k(t) \neq 0 \Longleftrightarrow T^{\prime}(t) \neq 0$ at $r(t) \in C$. Then we can define the principal unit normal vector $N(t)$ (or simply unit normal) as
$N(t)=\frac{T^{\prime}(t)}{\left|T^{\prime}(t)\right|} \quad$ when $k(t) \neq 0 \Longrightarrow \frac{d T}{d s}=k(s) N(s), \quad$ where $s=s(t)$ is the arc length parameter and the vector

$$
B(t)=T(t) \times N(t)
$$

is called the binormal vector.
Note that $B(t)$ is perpendicular to both $T(t)$ and $N(t)$ and is also a unit vector, i.e. $\langle B(t), T(t)\rangle=$ $0,\langle B(t), N(t)\rangle=0$ and $|B(t)|=|T(t) \times N(t)|=|T(t)||N(t)| \sin (\pi / 2)=1$.
Theorem The curvature of the curve given by the vector function $r(t)$ is

$$
k(t)=\frac{\left|r^{\prime}(t) \times r^{\prime \prime}(t)\right|}{\left|r^{\prime}(t)\right|^{3}}
$$

Proof Since

$$
k(s)=|k(s) B(s)|=|k(s) T(s) \times N(s)|=\left|T(s) \times \frac{d T}{d s}\right|=\left|\frac{d r}{d s} \times \frac{d^{2} r}{d s^{2}}\right|
$$

and since $T(s)=\frac{d r}{d s}$,

$$
\frac{d r}{d s}=r^{\prime}(t) \frac{d t}{d s}=\frac{r^{\prime}(t)}{\left|r^{\prime}(t)\right|} \quad \text { and } \quad \frac{d^{2} r}{d s^{2}}=\frac{r^{\prime \prime}(t)}{\left|r^{\prime}(t)\right|^{2}}+r^{\prime}(t) \frac{d^{2} t}{d s^{2}} \stackrel{r^{\prime} \times r^{\prime}=0}{\Longrightarrow} \frac{d r}{d s} \times \frac{d^{2} r}{d s^{2}}=\frac{r^{\prime}(t) \times r^{\prime \prime}(t)}{\left|r^{\prime}(t)\right|^{3}}
$$

we have

$$
k(t)=\frac{\left|r^{\prime}(t) \times r^{\prime \prime}(t)\right|}{\left|r^{\prime}(t)\right|^{3}}
$$

Remark Let C be a smooth (or regular) curve defined by the position vector function $r(t), t \in I$, and let $s=s(t)$ be the arc length parameter. Since

$$
\begin{gathered}
\frac{d r}{d s}=T(s), \quad \frac{d^{2} r}{d s^{2}}=\frac{r^{\prime \prime}(t)}{\left|r^{\prime}(t)\right|^{2}}+r^{\prime}(t) \frac{d^{2} t}{d s^{2}} \quad \text { and } \quad \frac{d T}{d s}=k(s) N(s), \\
\Longrightarrow \quad k(s) N(s)=\frac{d^{2} r}{d s^{2}}=\frac{r^{\prime \prime}(t)}{\left|r^{\prime}(t)\right|^{2}}+r^{\prime}(t) \frac{d^{2} t}{d s^{2}}=\frac{a(t)}{|v(t)|^{2}}+T(s)\left(|v(t)| \frac{d^{2} t}{d s^{2}}\right) \\
N \perp \perp,|N|=|T|=1 \\
\\
a_{N}(t)=\langle a(t), N(s)\rangle=k(s)|v(t)|^{2}, a_{T}(t)=\langle a(t), T(s)\rangle=-|v(t)|^{3} \cdot \frac{d^{2} t}{d s^{2}}
\end{gathered}
$$

where $v(t)=r^{\prime}(t), a(t)=r^{\prime \prime}(t)$ are respectively the velocity, acceleration vectors at the position $r(t)$ and $a_{N}(t), a_{T}(t)$ are the normal and tangent components of $a(t)$.
Example For the special case of a plane curve with equation $y=f(x)$, we choose x as the parameter and write $r(x)=x \mathbf{i}+f(x) \mathbf{j}$. Then $r^{\prime}(x)=\mathbf{i}+f^{\prime}(x) \mathbf{j}, r^{\prime \prime}(x)=f^{\prime \prime}(x) \mathbf{j}$, and

$$
k(x)=\frac{\left|f^{\prime \prime}(x)\right|}{\left[1+\left(f^{\prime}(x)\right)^{2}\right]^{3 / 2}}
$$

Example Find the unit normal and binormal vectors for the helix $r(t)=\langle\cos t, \sin t, t\rangle$.
Solution At $r(t)$, since $r^{\prime}(t)=\langle-\sin t, \cos t, 1\rangle$, the unit tangent vector $T(t)=\frac{r^{\prime}(t)}{\left|r^{\prime}(t)\right|}=$ $\frac{1}{\sqrt{2}}\langle-\sin t, \cos t, 1\rangle, T^{\prime}(t)=\frac{1}{\sqrt{2}}\langle-\cos t,-\sin t, 0\rangle$, the unit normal vector $N(t)=\frac{T^{\prime}(t)}{\left|T^{\prime}(t)\right|}=$ $\langle-\cos t,-\sin t, 0\rangle$, and the unit binormal vector $B(t)=T(t) \times N(t)=\frac{1}{\sqrt{2}}\langle\sin t,-\cos t, 1\rangle$.

Definition The plane determined by the vectors N and B at a point P on a curve C is called the normal plane of C at P. It consists of all lines that are orthogonal to the tangent vector T. The plane determined by the vectors T and N is called the osculating plane of C at P.

Definition The circle of curvature, or the osculating circle, of C at P is the circle in the osculating plane that passes through P with radius $\frac{1}{k}$ and center a distance $\frac{1}{k}$ from P along the vector N. The center of the circle is called the center of curvature of C at P.

Remarks

- We can think of the circle of curvature as the circle that best describes how C behaves near P, it shares the same tangent, normal, and curvature at P.
- Note that the curvature $k=|d T / d s|$ at a point P on a curve C indicates how tightly the curve "bends." Since T is a normal vector for the normal plane, $d T / d s$ tells us how the normal plane changes as P moves along C.
- Since B is normal to the osculating plane, $d B / d s$ gives us information about how the osculating plane changes as P moves along C. Thus there is a scalar τ such that

$$
\frac{d B}{d s}=\tau N \Longrightarrow \tau=\left\langle\frac{d B}{d s}, N\right\rangle \Longleftrightarrow \tau(t)=\frac{\left\langle B^{\prime}(t), N(t)\right\rangle}{\left|r^{\prime}(t)\right|}
$$

where τ is called the torsion of C at $P=r(t)$.
Example Find the torsion $\tau(t)$ of the helix $r(t)=\langle\cos t, \sin t, t\rangle$ at $r(t)$.
Solution At $r(t)$, since $r^{\prime}(t)=\langle-\sin t, \cos t, 1\rangle,\left|r^{\prime}(t)\right|=\sqrt{2}$,
$T(t)=\frac{r^{\prime}(t)}{\left|r^{\prime}(t)\right|}=\frac{1}{\sqrt{2}}\langle-\sin t, \cos t, 1\rangle, T^{\prime}(t)=\frac{1}{\sqrt{2}}\langle-\cos t,-\sin t, 0\rangle$,
$N(t)=\frac{T^{\prime}(t)}{\left|T^{\prime}(t)\right|}=\langle-\cos t,-\sin t, 0\rangle, B(t)=T(t) \times N(t)=\frac{1}{\sqrt{2}}\langle\sin t,-\cos t, 1\rangle$, we obtain that $B^{\prime}(t)=\frac{1}{\sqrt{2}}\langle\cos t, \sin t, 0\rangle$ and
$\tau(t)=\frac{\left\langle B^{\prime}(t), N(t)\right\rangle}{\left|r^{\prime}(t)\right|}=\frac{\left\langle B^{\prime}(t), N(t)\right\rangle}{\sqrt{2}}=-\frac{\cos ^{2} t+\sin ^{2} t}{2}=-\frac{1}{2}$.

More Facts（補充教材）

Definitions Let $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}\right)$ be vectors in \mathbb{R}^{3} ．
（a）The inner product $\langle x, y\rangle=x \cdot y$ is defined by

$$
\langle x, y\rangle=x \cdot y=\sum_{i=1}^{3} x_{i} y_{i}
$$

Note that for any $x, y, z \in \mathbb{R}^{3}$ and for any $a \in \mathbb{R}$ ，the definition implies that
－$\langle x, y\rangle=x \cdot y=\sum_{i=1}^{3} x_{i} y_{i}=\sum_{i=1}^{3} y_{i} x_{i}=y \cdot x=\langle y, x\rangle$（inner product is symmetric），
－$\langle z, a x+y\rangle=\langle a x+y, z\rangle=a\langle x, z\rangle+\langle y, z\rangle$（inner product is bilinear）．
（b）The cross product $x \times y$ is defined by ，

$$
x \times y=\left(\left|\begin{array}{ll}
x_{2} & x_{3} \\
y_{2} & y_{3}
\end{array}\right|,-\left|\begin{array}{ll}
x_{1} & x_{3} \\
y_{1} & y_{3}
\end{array}\right|,\left|\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right|\right)=\left(x_{2} y_{3}-x_{3} y_{2}, x_{3} y_{1}-x_{1} y_{3}, x_{1} y_{2}-x_{2} y_{1}\right) .
$$

The definition implies that

$$
y \times x=\left(\left|\begin{array}{ll}
y_{2} & y_{3} \\
x_{2} & x_{3}
\end{array}\right|,-\left|\begin{array}{ll}
y_{1} & y_{3} \\
x_{1} & x_{3}
\end{array}\right|,\left|\begin{array}{cc}
y_{1} & y_{2} \\
x_{1} & x_{2}
\end{array}\right|\right)=-\left(\left|\begin{array}{ll}
x_{2} & x_{3} \\
y_{2} & y_{3}
\end{array}\right|,-\left|\begin{array}{ll}
x_{1} & x_{3} \\
y_{1} & y_{3}
\end{array}\right|,\left|\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right|\right)=-x \times y,
$$

Remarks

（a）By the law of cosines，

$$
|x-y|^{2}=(\text { length of the vector } x-y)^{2}=|x|^{2}+|y|^{2}-2|x||y| \cos \theta
$$

This gives

$$
\begin{aligned}
2|x||y| \cos \theta & =|x|^{2}+|y|^{2}-|x-y|^{2} \\
& =\sum_{i=1}^{3} x_{i}^{2}+\sum_{i=1}^{3} y_{i}^{2}-\sum_{i=1}^{3}\left(x_{i}-y_{i}\right)^{2} \\
& =2 \sum_{i=1}^{3} x_{i} y_{i} \\
& =2\langle x, y\rangle .
\end{aligned}
$$

Hence we have $\sum_{i=1}^{3} x_{i} y_{i}=\langle x, y\rangle=|x||y| \cos \theta$ ，where θ is the angle between x and y ．
(b) Let $z=\left(z_{1}, z_{2}, z_{3}\right)$ be a vector in \mathbb{R}^{3}. Then

$$
\begin{aligned}
\langle z, x \times y\rangle & =\left\langle z,\left(\left|\begin{array}{ll}
x_{2} & x_{3} \\
y_{2} & y_{3}
\end{array}\right|,-\left|\begin{array}{ll}
x_{1} & x_{3} \\
y_{1} & y_{3}
\end{array}\right|,\left|\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right|\right)\right\rangle \\
& =z_{1}\left|\begin{array}{ll}
x_{2} & x_{3} \\
y_{2} & y_{3}
\end{array}\right|-z_{2}\left|\begin{array}{ll}
x_{1} & x_{3} \\
y_{1} & y_{3}
\end{array}\right|+z_{3}\left|\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right| \\
& =\left|\begin{array}{lll}
z_{1} & z_{2} & z_{3} \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right|=\operatorname{det}(z, x, y)=\text { determinant of }\left(\begin{array}{lll}
z_{1} & z_{2} & z_{3} \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right)
\end{aligned}
$$

For any $a, b \in \mathbb{R}$, since

$$
\langle a x+b y, x \times y\rangle=\left|\begin{array}{ccc}
a x_{1}+b y_{1} & a x_{2}+b y_{2} & a x_{3}+b y_{3} \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right|=a\left|\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right|+b\left|\begin{array}{lll}
y_{1} & y_{2} & y_{3} \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right|=0,
$$

If $x \times y \neq 0 \in \mathbb{R}^{3}$, then $x \times y$ is a vector perpendicular to the plane spanned by x and y.
(c) If x and y are parallel, then $x \times y=0 \in \mathbb{R}^{3}$.
(d) Let $e_{1}=(1,0,0), e_{2}=(0,1,0), e_{3}=(0,0,1)$. Since

$$
\left\langle e_{i}, e_{j}\right\rangle=\left\{\begin{array}{ll}
1 & \text { if } i=j, \\
0 & \text { if } i \neq j,
\end{array} \text { and } e_{i} \times e_{i}=0 \quad \text { for } i=1,2,3,\right.
$$

$e_{1} \times e_{2}=e_{3}, e_{1} \times e_{3}=-e_{2}, e_{2} \times e_{3}=e_{1}$ and $\operatorname{det}\left(e_{i} \times e_{j}, e_{i}, e_{j}\right)=1$ for all $1 \leq i \neq j \leq 3$, we have

$$
\begin{aligned}
\left(e_{i} \times e_{j}\right) \cdot\left(e_{k} \times e_{\ell}\right) & =\operatorname{det}\left(e_{i} \times e_{j}, e_{k}, e_{\ell}\right) \\
& = \begin{cases}0 & \text { if } i=j, \text { or } k=\ell, \text { or }\{i \neq j\} \neq\{k \neq \ell\} \\
1 & \text { if }\{i=k \neq j=\ell\} \\
-1 & \text { if }\{i=\ell \neq j=k\}\end{cases} \\
& =\left|\begin{array}{ll}
e_{i} \cdot e_{k} & e_{j} \cdot e_{k} \\
e_{i} \cdot e_{\ell} & e_{j} \cdot e_{\ell}
\end{array}\right| \quad \text { for all } i, j, k, \ell=1,2,3,
\end{aligned}
$$

and the identity

$$
(u \times v) \cdot(x \times y)=\left|\begin{array}{ll}
u \cdot x & v \cdot x \\
u \cdot y & v \cdot y
\end{array}\right| \quad \text { for all } u, v, x, y \in \mathbb{R}^{3}
$$

by noting that both sides are linear in $u=\sum_{i=1}^{3} u_{i} e_{i}, v=\sum_{j=1}^{3} v_{j} e_{j}, x=\sum_{k=1}^{3} x_{k} e_{k}, y=\sum_{\ell=1}^{3} y_{\ell} e_{\ell}$.
In particular, for any $x, y \in \mathbb{R}^{3}$ this implies that
$(x \times y) \cdot(x \times y)=\left|\begin{array}{ll}x \cdot x & y \cdot x \\ x \cdot y & y \cdot y\end{array}\right|=(x \cdot x)^{2}(y \cdot y)^{2}-(x \cdot y)^{2}=|x|^{2}|y|^{2}-|x|^{2}|y|^{2} \cos ^{2} \theta=|x|^{2}|y|^{2} \sin ^{2} \theta$
so $|x \times y|=|x||y| \sin \theta$, where θ is the angle between x and y. Hence $|x \times y|=$ the area of the parallelogram spanned by x and y.

（e）If $x \times y \neq 0 \in \mathbb{R}^{3}$ ，then $\operatorname{det}(x \times y, x, y)=\langle x \times y, x \times y\rangle=|x \times y|^{2}>0$ ，and x, y and $x \times y$ form a right－handed triple．

Remarks Let $x, y:(a, b) \rightarrow \mathbb{R}^{3}$ be differentiable functions defined on (a, b) with vector value in \mathbb{R}^{3} ．Then
（a）$\frac{d}{d t}\langle x, y\rangle=\left\langle\frac{d x}{d t}, y\right\rangle+\left\langle x, \frac{d y}{d t}\right\rangle$ ．
Proof For each $t \in(a, b)$ ，let

$$
x=x(t)=\left(x_{1}(t), x_{2}(t), x_{3}(t)\right)=\left(x_{1}, x_{2}, x_{3}\right), y=y(t)=\left(y_{1}(t), y_{2}(t), y_{3}(t)\right)=\left(y_{1}, y_{2}, y_{3}\right) .
$$

Since $\langle x, y\rangle=\sum_{i=1}^{3} x_{i} y_{i}$ ，we have

$$
\frac{d}{d t}\langle x, y\rangle=\sum_{i=1}^{3} \frac{d}{d t}\left(x_{i} y_{i}\right)=\sum_{i=1}^{3} \frac{d x_{i}}{d t} y_{i}+\sum_{i=1}^{3} \frac{d y_{i}}{d t} x_{i}=\left\langle\frac{d x}{d t}, y\right\rangle+\left\langle x, \frac{d y}{d t}\right\rangle .
$$

（b）$\frac{d}{d t}(x \times y)=\frac{d x}{d t} \times y+x \times \frac{d y}{d t}$ ．
（c）If $|x(t)|=r$ ，a positive constant，for all $t \in(a, b)$ ，then $\frac{d}{d t}\langle x, x\rangle=\frac{d}{d t}\left(r^{2}\right)=0$ ．We have $\left\langle\frac{d x}{d t}, x\right\rangle=0$ for all $t \in(a, b) \Longrightarrow \frac{d x}{d t} \perp x$（互相垂直）whenever $\frac{d x}{d t} \neq 0$ ．

