Calculus Study Guide 11 Spring 2022

Vector-Valued Functions

Definition A vector-valued function, or vector function
r:ICR—-R"

is a function whose domain is a subset I of R and whose range is a set of vectors in R", that is

n

r(t) = (ri(t), ra(t), ..., ra(t)) = Zri(t)ei € R" foreacht eI,

i=1
where
ith
e ¢;=(0,...,0,1,0,...,0) is the unit vector in the positive i*® coordinate,
® r1,79,...,7, . I — R are called the component functions of r.

Definitions Let r : I C R — R" be a vector function defined by

n

r(t) = (ri(t),rat), ..., ra(t)) = > _ri(t)e; tel

=1

o }im r(t) exists if and only if %im ri(t) exists for each 1 <1i < n.
l—a —a

Furthermore, if Pm r(t) exists, then
—a

limr(t) = (limry (), lim ra(2), ... i (1)),

e 7 is continuous at t = a if
limr(t) = r(a).

t—a
Thus r is continuous at t = a if and only if its component functions rq,79,...,7, are
continuous at a.
e 1 is differentiable at t = a if and only if its component functions rq, 79, ..., 7, are differen-
tiable at a.
Furthermore, if r is differentiable at ¢ = a, then its derivative r'(a) is a vector in R" defined
by
r(t) —r(a) _ . ri(t) —ria) . 72(t) —ra(a) - ralt) —Ta(a),
"(a) =1 =l 1 o im ————) = ! ;.
r'(a) = lim —— (lim === lim ===, . lim == ) Zln(a)ez
1=
e 1 is integrable on [a,b] C I if and only if its component functions ry, ry, ..., 7, are integrable
on [a, b].

b
Furthermore, if 7 is integrable on [a, b], then its definite integral / r(t)dt is a vector in R"
defined by ‘

/abfr(t) dt = </abr1(t) dt,/:m(t) i, . ,/ab'rn(t) dt) — z_: [/ab”(t) dt} .
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Definition If r : I C R — R? is continuous on an interval I, then the set C' defined by
C =A{(x1,29,23) | x1 = 11(t), 2 = 12(t), T3 = 1r3(t), t € [} = trace of r throughout I

is called a space curve given by the vector function (or parametrization) r(t), ¢t € I.

Note that a single curve C' can be represented by more than one vector function. For instance,
ri(t) =15 1°),1 <t <2 and 7y(u) = (%, e, e),0 < u < In2
are parametrizations of the same twisted cubic curve, and the connection between the parameters
t and u is given by ¢t = e".
Examples
1. r(t) = (£, In(3 — t),V/t) is a vector function from [0, 3) to R3.

int
2. Find limr(t), wehre 7(t) = (1 +#*)i + te 'j + Sl%k, where i =e1,j = €2,k = e3.

t—0
3. Sketch the curve whose vector equation is r(¢) = costi + sintj + tk, t € R. Note that this
curve is called a helix.

int
4. Find the derivative of r(t) at t = 0, wehre r(t) = (1 +t°)i+te 'j+ Sl%k, and find the unit

tangent vector at the point where ¢t = 0.
w/2
5. Find / r(t) dt, where r(t) = 2 costi + sin tj + 2tk.
0

Theorem Let I be an interval, u, v : I — R3 be differentiable vector functions, ¢ be a scalar,
f I — R be a differentiable function and g : I — I be a differentiable function. Then

1. % [u(t) +v(t)] = u'(t) + v'(¢) 4. % [w(t) - o(t)] = W' () - v(t) +ult) - (1),
2 % [eu(t)] = eu'(t) 5. % [u(t) x v(t)] = u'(t) x v(t) +ult) xv'(t),
3. % [F(O)u(®)] = f()ul®) + f(H)'() 6. % [u(g(t))] = ¢'(t)d/(g(t)) (Chain Rule)

where (u(t) - v(t)) = u(t)-v(t) and u(t) x v(t) denotes the inner product and the cross productof
u(t) and wv(t), respectively.

Theorem If r : I — R? is differentiable and |r(¢)| = ¢ (a constant), then +’(¢) is orthogonal to
r(t) for all ¢.

Arc Length Let C be a curve given by a vector equation (or vector function, or parametrization)
r(t) = (ri(t),r2(t), rs(t)) = r(D)i+ra(t)j +r3(H)k, ¢ € [a,b]

where 7’ is continuous and C' is traversed exactly once as t increases from a to b. Then
the length of C'is
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y

Define its arc length function s by

Then s(t) is the length of the part of C' between r(a) and r(¢), and, by the Fundamental Theorem
of Calculus, s(t) is differentiable with

% = |r'(t)| fort € (a,b).

It is often useful to parametrize a curve with respect to arc length because arc length
arises naturally from the shape of the curve and does not depend on a particular coordinate
system or a particular parametrization.

Examples
1. Find the length of the arc of the circular helix with vector equation r(t) = costi+sintj+tk
from the point (1,0,0) to the point (1,0, 27).
2. Reparametrize the helix r(t) = costi+ sintj + tk with respect to arc length measured from
(1,0,0) in the direction of increasing t.
Definition A parametrization r(¢) is called smooth (or regular) on an interval I if r'(t) is
continuous and r'(t) # 0 for each t € I.
Remark Let C' be a smooth curve defined by the vector function r(t), t € [a,b], s(t) =

¢ b
/ 7' (u)| du, and let L = / |7'(u)| du be the length of C.

Since % = |r'(t)] > 0 for t € (a,b), s = s(t) : [a,b] — [0, L] is an 1-1, increasing function and
has a differentiable inverse ¢t = ¢(s) : [0, L] — [a, b] such that

_dt_dtds a1 1
S dt  dsdt ds ds/dt |r'(t)]

A curve is called smooth if it has a smooth parametrization. A smooth curve has no sharp corners
(e.g. r(t) = (t,]t]), t € R, at (0,0), r'(0) does not exist) or cusps (e.g. r(t) = (t3,t3),t > 0, at
(0,0), '(0) = (0,0)); when the tangent vector turns, it does so continuously. If C' is a smooth
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curve defined by the vector function r, recall that the unit tangent vector 7'(t) of C" at r(t) is
given by

T(t) = f/(“ — (T(t),T(t) =1 = %(T(t),T(t» —0 = (T'(t),T(t)) =0 forall t € I

and 7'(t) indicates the direction of the curve.

Definition Let C' be a smooth (or regular) curve defined by the vector function r(t), t € I, and
let T'(t) be the unit tangent vector to C' at r(t). Then the curvature of a curve at r(t) is

dfT
ds

The curvature is easier to compute if it is expressed in terms of the parameter t instead of s, so
we use the Chain Rule to write

dT _ dT ds
dt — ds dt

dT| || _ [T
SO~ 0]

1
Example Show that the curvature of a circle of radius a is —.
a

Definition Let C be a smooth (or regular) curve defined by the vector function r(t), ¢ € I, and let
T'(t) be the unit tangent vector to C' at r(t). Suppose that the curvature k(t) # 0 <= T'(t) # 0
at r(t) € C. Then we can define the principal unit normal vector N(¢) (or simply unit normal)
as

dT

T'(t
N(t) = |T/Ef§ when k(t) #0 = i k(s)N(s), where s = s(t) is the arc length parameter

and the vector
B(t) =T(t) x N(t)
is called the binormal vector.

Note that B(t) is perpendicular to both T'(¢) and N (t) and is also a unit vector, i.e. (B(t),T(t)) =
0, (B(t), N(t)) = 0 and |B(t)| = [T'(t) x N(t)] = [T(#)[ [N (#)] sin(m/2) = 1.

Theorem The curvature of the curve given by the vector function r(t) is

[r'(8) x r"(2)]

0= P

Proof Since

dar. dr &
k(s) = k() B(s)| = [k(s) T(s) x N(s)| = [T(s) x | = |7 x ~|

dr
d since T'(s) =
and since 7'(s) 7o

dr,, .dt (1) d*r  r(t) Lo A2t g dr dPro ' (E) x r(t)

— =7 (t)— = d — = t)— — X =

s "0 "ol ™ wE T rwE T Yae T G i rapE
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we have () o)
O "rmr

Remark Let C be a smooth (or regular) curve defined by the position vector function r(t), t € I,
and let s = s(t) be the arc length parameter. Since

Lot = 20D ma kN,
= HONG) = 5= g+ O = g+ T (101 )

NLT,|N|=|T|=1 d*t

= an(t) = {a(t), N(s)) = k(s)lv(®)]*, ar(t) = {a(t), T(s)) = ()] - 75
where v(t) = r'(t), a(t) = r"(t) are respectively the velocity, acceleration vectors at the position
r(t) and an(t), ar(t) are the normal and tangent components of a(t).

Example For the special case of a plane curve with equation y = f(z), we choose z as the
parameter and write r(x) = xi + f(x)j. Then +'(z) =i+ f'(x)j, r"(z) = f"(2)j, and
/" ()]
k(x) = :
O T (FarPe

Example Find the unit normal and binormal vectors for the helix r(t) = (cost,sint,t).

/
t
Solution At r(t), since r'(t) = (—sint,cost, 1), the unit tangent vector T'(t) = r/g) =
r
1 1
—(—sint,cost, 1), T'(t) = —=(—cost,—sint,0), the unit normal vector N(t) = Tt =

V2 V2 (1)

1
(—cost,—sint,0), and the unit binormal vector B(t) = T'(t) x N(t) = —=(sint, — cost, 1).

V2

\_/v
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Definition The plane determined by the vectors N and B at a point P on a curve C'is called
the normal plane of C' at P. It consists of all lines that are orthogonal to the tangent vector T.
The plane determined by the vectors 7" and N is called the osculating plane of C at P.

) aB
[ ds

Definition The circle of curvature, or the osculating circle, of C' at P is the circle in the osculating

1 1
plane that passes through P with radius — and center a distance — from P along the vector V.

The center of the circle is called the center of curvature of C' at P.
Remarks
e We can think of the circle of curvature as the circle that best describes how C' behaves near
P, it shares the same tangent, normal, and curvature at P.

e Note that the curvature k = |dT'/ds| at a point P on a curve C indicates how tightly the
curve “bends.” Since T is a normal vector for the normal plane, d7'/ds tells us how the
normal plane changes as P moves along C.

e Since B is normal to the osculating plane, dB/ds gives us information about how the
osculating plane changes as P moves along C. Thus there is a scalar 7 such that

dB _ dB _ (B'(1).N(®))
s =7N — 7= <E7N> <— T(t)—W,

where 7 is called the torsion of C' at P = r(t).

Example Find the torsion 7(t) of the helix r(t) = (cost,sint,t) at r(t).
Solution At r(t), since () = (—sint, cost, 1), | (t)| = V2,

"t 1 1
T(t) = () = —(—sint,cost, 1), T'(t) = —=(— cost, —sint, 0),

\T()! V2 V2 :
N(t) = ‘ t o = (—cost,—sint,0), B(t) = T(t) x N(t) = E(sint, —cost, 1), we obtain that
B'(t) = cost,sint,0) and

- f
(t) = (B'(t), N(t)) _ (B'(t),N(t)) _ 7cos2t+sith _ 1
|r'(1)] V2 2 2
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More Facts (#fi 7BHH)

Definitions Let x = (21,72, 23) and y = (y1, y2, y3) be vectors in R3.

(a) The inner product (z, y) = x - y is defined by

3
(z,y) :$'yzz$i?/i'
i=1
Note that for any x, y, z € R* and for any a € R, the definition implies that

o (z,y)=x-y= Z Ty = Z yix; =y -x = (y, z) (inner product is symmetric),
=1
o (z,ar+y) = <aa: + y, z) =alx, z) + (y, z) (inner product is bilinear).

(b) The cross product = x y is defined by ,

o=

The definition implies that

wxa=(

Remarks

T2 I3
Y2 Y3

Xy XT3
Y1 Y3

T1 T2
)
Y1 Y2

) = ($U2y3 — T3Y2, T3Y1 — T1Y3, T1Y2 — 30291) .

) = —IT XY,

Tr1 X2
)
Yyr Yo

Y2 Y3
Ty T3 ’

Y1 s
Ty I3

Y1 Y2
Ty T2

T2 I3
Y2 Y3

Ty T3
Yy Y3

Y

)~

(a) By the law of cosines,

|z — y|* = (length of the vectorz — y)* = |z|* + |y|* — 2|z||y| cos 6.
This gives

2|z|ly| cosf = Irc‘l2 + Iyl2 — |z — y|2

= ZHZ% Z —u)’
= QZl‘iyz‘
= 2(z,y).

Hence we have Z zy; = (@, y) = |z||ly| cos 0, where 6 is the angle between x and y.
i=1
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(b) Let 2z = (21, 29, 23) be a vector in R3. Then

<Zv T X y> = Z, T2 s y 1ot ’ o1
Y2 Y3 Y1 Y3 Y1 Y2
To T
- 2 2 3 — 2 Ty 3 12 Typ T2
Y2 Y3 Y1 Y3 Y1 Y2
Z1 k9 Z3 Z1 k9 Z3
= |z1 x9 z3| =det(z,z,y) = determinant of | x; x5 x3
Y1 Y2 Y3 Y1 Y2 Y3
For any a, b € R, since
ary + by awy+bys axz+ by T1 Ty T3 Y1 Y2 Y3
(ax + by, x X y) = T T T3 =al|ry my x3|+blry T2 23] =0,
Y1 Y2 Ys Y Y2 Y3 yr Y2 Y3

If x x y #0 € R3 then z x y is a vector perpendicular to the plane spanned by = and v.
(c) If z and y are parallel, then z x y = 0 € R3.
(d) Let e; =(1,0,0), e = (0,1,0), e5 = (0,0, 1). Since

] £
<ei,ej>:{ B and e; x e, =0 fori=1, 2, 3,

0 ifi#],
e1 X ey =e3, €1 X €3 = —€y, €g X e3 = €1 and det(e; X ej,e;,e;) =1forall 1 <i#j <3,
we have
(ei xe;) - (ex X ) = det(e; x €5, ek, er)

0 ifi=yg,ork=1"0 or{i#j}#{k#!},
= {1 if{i=k+j=0)
1 iff{i=l#j=k
e ek € e
€€ €j-ey

forall 7, 5, k, £ =1, 2, 3,

and the identity

C|urx vz 3
(u X v) (a:xy)_u.y vy for all u, v, z, y € R

3 3 3 3
by noting that both sides are linear in u = Z Ui, V= Z vje;, T = Z Trer, Y = Z Yeey.

i=1 j=1 k=1 =1
In particular, for any z, y € R? this implies that
(xy)axy) = [ )T = @) 9 (e 9)" = [oPlyP—[aPly cos® 0 = oy sin® 0
so |z X y| = |z||y| sin @, where 6 is the angle between x and y. Hence |z x y| = the area of

the parallelogram spanned by x and y.
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uxv

uxXv

(e) f v x y #0 € R3 thendet(z x y,z,9) = (x xy, zxy) = |z xy[*>0,and z, y and z x y
form a right-handed triple.

Remarks Let z, y : (a,b) — R? be differentiable functions defined on (a,b) with vector value
in R3. Then

d dx dy

Proof For each ¢ € (a,b), let

z = x(t) = (21(t), 22(1), 23(1)) = (21,22, 23), y = y(t) = (v2 (1), y2(), ys(£)) = (w1, 42, 3)-

3
Since (z, y) = Zmiyi, we have
=1

d d:cz dyl dy
i=1 =1

d dy
b _ o ay.
()dt(xxy) o Xyt

d d

(c) If |x(t)] = r, a positive constant, for all ¢ € (a,b), then E@ x) = E<T2) = 0. We have

d d dz

<d_i:’ z) =0for all t € (a,b) = d—f 1o (AAHEEH) Whenever — 7é 0.
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